import pandas as pd
= pd.read_csv("../data/raw/wildfire/wildfire.csv")
wildfire wildfire.head()
YEAR | FIRE_NUMBER | FIRE_NAME | CURRENT_SIZE | SIZE_CLASS | LATITUDE | LONGITUDE | FIRE_ORIGIN | GENERAL_CAUSE | INDUSTRY_IDENTIFIER | ... | DISTANCE_FROM_WATER_SOURCE | FIRST_BUCKET_DROP_DATE | FIRST_BH_DATE | FIRST_BH_SIZE | FIRST_UC_DATE | FIRST_UC_SIZE | FIRST_TO_DATE | FIRST_TO_SIZE | FIRST_EX_DATE | FIRST_EX_SIZE_PERIMETER | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2006 | PWF001 | NaN | 0.10 | A | 56.249956 | -117.181960 | Private Land | Resident | NaN | ... | NaN | NaN | 2006-04-02 22:00:00 | 0.01 | 2006-04-02 22:00:00 | 0.01 | NaN | NaN | 2006-04-03 10:20:00 | 0.10 |
1 | 2006 | EWF002 | NaN | 0.20 | B | 53.606367 | -115.915733 | Provincial Land | Incendiary | NaN | ... | NaN | NaN | 2006-04-03 13:20:00 | 0.20 | 2006-04-03 13:20:00 | 0.20 | NaN | NaN | 2006-04-03 14:00:00 | 0.20 |
2 | 2006 | EWF001 | NaN | 0.50 | B | 53.610933 | -115.594267 | Provincial Land | Incendiary | NaN | ... | NaN | NaN | 2006-04-03 13:23:00 | 0.50 | 2006-04-03 13:23:00 | 0.50 | NaN | NaN | 2006-04-03 15:00:00 | 0.50 |
3 | 2006 | EWF003 | NaN | 0.01 | A | 53.608867 | -115.609467 | Provincial Land | Incendiary | NaN | ... | NaN | NaN | 2006-04-03 14:08:00 | 0.01 | 2006-04-03 14:08:00 | 0.01 | NaN | NaN | 2006-04-03 15:05:00 | 0.01 |
4 | 2006 | PWF002 | NaN | 0.10 | A | 56.249956 | -117.050249 | Provincial Land | Other Industry | Waste Disposal | ... | NaN | NaN | 2006-04-03 19:57:00 | 0.10 | 2006-04-03 20:19:00 | 0.10 | 2006-04-03 20:20:00 | 0.1 | 2006-04-05 10:18:00 | 0.10 |
5 rows × 50 columns